氮氧化合物是最主要的大气污染物之一,如何“减排”至关重要,工业上称之为脱硝。但是,目前广泛的SCR脱硝法存在一处“软肋”:在450-523K的中低温区间,哪怕废气中存在一丁点儿的二氧化硫,都会导致催化剂失效。浙江大学材料科学与工程学院教授王勇和杨杭生研究团队通过原位环境电子显微技术,首次在原子尺度实时观察到了脱硝反应过程中催化剂的动态行为,解码了催化剂中毒的微观机理,在此基础上成功设计制备出一种新型催化剂,它能在低温下持续、稳定、高效地脱硝,达到了准工业级水平。
相关论文9月2日发表于《先进材料》(Advanced Materials)杂志(点击文末“阅读原文”获取链接)。这项研究是在中科院院士张泽的指导下,联合材料学院韩高荣课题组和物理学系陆赟豪共同完成的。共同第一作者是材料学院马朝霞博士、盛丽萍博士和王欣伟。
氮气是空气的主要成分,在工业上,通常有燃烧的地方就有氮氧化合物产生。这是一类对人类很不友好的气体,可引起光化学烟雾、酸雨、臭氧层破坏等环境问题,也是人类健康的威胁因素,人们一直在想办法去掉它们,保护大气。上世纪八十年代,选择催化还原技术(SCR)开始用于工业现场,对于火电厂等产生的高温废气,它们有着优秀的脱硝能力,但对于钢铁、陶瓷、玻璃等工业过程中产生的中低温尾气,它们却束手无策。
科学界称催化剂失效的现象为“中毒”。低温工业尾气净化往往先脱硫,再脱硝,在脱硫阶段残余的二氧化硫会严重影响脱硝阶段的成效。催化剂为何中毒?科学家希望通过电子显微镜在原子尺度观察“中毒”现象,帮助它们认识其深层机理。
研究团队在球差校正透射电镜里构建了一个人工“烟囱”,里面的气压和温度与真实工业线保持一致。“这里模拟了工业线上的脱硝环境,在原子层级实时呈现催化剂的‘中毒’过程。”王勇说。通过实验,科研人员得到了世界上第一张原子分辨级的催化剂中毒照片:
在催化剂氧化铈晶体的部分表面,我们看到它的晶格结构已经模糊,二氧化硫与催化剂反应形成硫酸盐颗粒,表面覆盖累积,形成许多不均匀的小凸起。“正是这些凸起遮蔽了催化剂与废气的接触,束缚了催化效力的发挥。”王勇说。
在电子显微镜下可以看到,当氨气经过中毒的催化剂表面,沉积在氧化铈表面的硫酸盐凸起渐渐“消肿”
如何破解中毒难题?科学家在电子显微镜的“烟囱”里,继续探索催化剂“解毒”的过程。他们发现,当氨气经过中毒的催化剂表面,沉积在氧化铈表面的硫酸盐凸起渐渐“消肿”了,“这是催化剂的‘解毒’的过程。”杨杭生说,“‘消肿’后的催化剂,可以恢复催化能力。”“氨气本来是参与SCR催化反应的气体,通过原位电镜研究,我们意外的发现在合适的实验条件下氧化铈可以实现硫酸盐的沉积与分解的动态平衡,这个信息对我们“解毒”至关重要。”王勇补充说。
图:反应循环的建立确保硫酸盐的沉积与分解达到动态平衡
在脱硝催化剂领域,氧化锰是催化性能优异的“白马”,而氧化铈是表现一般的“黑马”。但是,“白马”容易受到二氧化硫的干扰,一遇到二氧化硫,其性能就直线下降。氧化铈虽然催化效力差氧化锰很远,但它自带的“解毒”本领,让科学家看到了它的潜力。王勇说,氧化铈能让硫酸盐的沉积与转化实现动态的平衡,这是其“解毒”机制的核心。“下一步是希望怎样把两者的优点结合,扬长避短。”
根据电子显微镜提供的信息,理论计算科学家通过第一性原理模拟,试图去寻找“白马”与“黑马”的最佳配比方案。这种复合催化剂的思路,该研究团队并不是第一个想到的。但他们发现,常见的混合方法容易在催化剂表面形成硫酸(氢)铵网络结构,导致氮氧化物和氨气分子无法靠近锰离子并与之发生反应,造成催化剂活性下降。
图:理论计算理解位阻效应
“通过原位环境透射技术的观察和第一理论计算,我们得到了一种全新的设计方案。”王勇介绍,这是一种新型的氧化铈、氧化锰复合催化剂,两者以全新的方式混合,形成一定的微观结构。“氧化锰颗粒形成团簇,分布于棒状的氧化铈晶体上,氧化锰团簇的尺寸在1纳米左右。”杨杭生补充道:“这些都是通过精密的理论计算得出的。”
新型的催化剂的“减排”能力究竟如何?需要有接近工业现场的实验验证。研究团队在实验室构建了一个仿真的烟气处理装置,新型催化剂在进行真实场景的考验。
图:持续稳定的抗中毒性能
在“起跑”的最初几个小时,传统的氧化锰催化剂与新型催化剂齐头并进,共同处于催化能力的高位。但不到24小时,氧化锰的催化能力锐减,迅速跌破“黑马”氧化铈的能力线。而新型催化剂则一路“笑到最后”,实验持续进行了1000小时,其能力线一直平稳的处于高位。
“可以说,这种催化剂达到了准工业级的应用要求。”杨杭生说,这一氧化铈氧化锰的复合催化剂,解决了低温尾气持续高效净化的难题。在此之前,科学界曾尝试用添加“牺牲剂”的方法去消除二氧化硫的干扰,但王勇认为,牺牲剂虽然在短时间内能消除二氧化硫,但需要不断补充添加才能得以实现“抗毒”效果,否则将很快中毒失效,因此应用于工业现场并不现实。“我们的方法是既维持了硫酸盐的沉积与转化的动态平衡,又保持了催化剂的高效催化。”
(科学撰稿人 周炜)